	19PTE031 Applied Micropalaeontology										
	Теа	ching Sch	neme					Exan	nination So	cheme	
L	Т	Р	С	Hr/Wk	Т	heory	/	Practic	al	Total Marks	
3	0	0	3	3	MS	ES	IA	LW	LE/Viva	100	
					25	50	25				
UNIT-I Introdu	iction to	Micropa	laeontol	logy in Pe	troleu	ım Ex	xplora	ation, A	ppraisal a	(10 Hrs) and Development	
Calcare	eous Mic	crofossils	s (Foram	inifera, C	Calcare	eous a	algae,	, Ostrac	ods); Cal	careous nannofossil.	
UNIT-II(9 Hrs)Siliceous microfossils (Diatoms, Radiolarians, Silicoflagilates); Phosphatic microfossilsmicrofossils(Conodonts, and other phosphatic microfossils)(10 Hrs)UNIT-III(10 Hrs)Organic walled Microfossils (Acritarchs Chitinozans Dinoflagellates Spores and Pollen:											
Palyno	c walled facies);	d Micro	tossils	(Acritarel	ns, C	hitino	ozans	, Dino:	flagellate	s, Spores and Pollen;	
UNIT-IV	1									(10 Hrs)	
Biostra Microp Case hi	Biostratigraphy and Palaeoenvironment interpretation; Integrated stratigraphy; Application of Micropalaeontology in Petroleum Exploration, Appraisal and Development. Case histories in Petroleum Exploration-Clastic system; Carbonate system.										
REFEREN 1) 2)	 REFERENCES 1) Jones, R. W. (1996) Micropalaeontology in Petroleum Exploraiton, Oxford Science Publication. 2) Bilal U. Haq and Anne Boersma, (1978) Introduction to Marine Micropalaeontology, Elsevier 										

North-Holland, Inc., New York. 376pp

19PTE032 Petroleum Exploration-II												
	Теа	ching Scl	heme			Examination Scheme						
L	Т	Р	С	Hr/Wk	Theory			Practical		Total Marks		
3	1	0	4	4	MS	MS ES IA		LW	LE/Viva	100		
					25	50	25					

UNIT-I

(9 Hours)

Theory of waves, Body waves and surface waves, noise and noise analysis, Designing seismic refraction and reflection, understanding of 2D and 3D seismic, Hammer seismic survey, Low velocity zone, Time- Distance curve generation for Refraction seismic (Flat Refractors and Dipping Refractors), uphole survey, picking first arrival time and interpretation of refraction data.

UNIT-II

(10 Hours)

Configuration for reflection seismic survey, survey instrument, Dynamic range of instrument, Noise analysis, seismic configuration, Geophone working principle, Derivation of Time-Distance curve for two layers and three layers dipping and non-dipping reflectors, Interpretation of seismic data, Acoustic Impedance and Reflectivity coefficient calculation, velocity estimation, stacking velocity and Root Mean square velocity, Loop tying, structural interpretation, stratigraphic interpretation, prospect generation, POS calculation, Generation of drillable prospect.

UNIT-III

Basic seismic processing, Horizontal and Vertical seismic resolution, seismic sequence stratigraphy, colour, character and zero phaseness, AVO class sands, reservoir identification, bright spot, dim spot, flat spot, 4D reservoir monitoring, post stack radon transformation, 2D and 3D attributes, 4D time lapse survey.

UNIT-IV

(10 Hours)

(10 Hours)

Case studies of structural and stratigraphic seismic interpretation (2D and 3D) for prospect generation, integration of seismic with well log data, Time model and depth model generation, preparation of facies maps and derived parameters, seismic inversion (deterministic and stochastic).

REFERENCES

Text Book

Milton B Dobrin, Introduction to Geophysical Prospecting, Mc Graw Hill

(1)...Interpretation of three- dimensional seismic data- Sixth Edition, AAPG Memoir 42 SEG investigations in Geophysics, No. 9

Reference Book

W M Telford, L.P. Gildart, Robert E Sheriff, 1990, Applied Geophysics, Cambridge University Press, Second Edition.

1. Donald A Herron, 2011, First steps in seismic interpretation, Society of Exploration Geophysicist.

	19PTE033 Advanced Formation Evaluation										
	Теа	ching Scł	neme					Exan	nination So	cheme	
L	Т	Р	С	Hr/Wk	Т	heory	/	Practic	al	Total Marks	
3	1	0	4	4	MS	ES	IA	LW	LE/Viva	100	
					25	50	25				
UNIT-I Formati data or Temper	ion evalu n differen rature log	uation ba nt tracks gs, Closed	sics, Bor ,Basic wo hole env	ehole env orking prir vironment	ironm nciple	ent, l of va	nvasi irious	on, Log logging	acquisitio tools, Co	(8 Hours) n, representation of log pring and Core analysis,.	
UNIT-II (10 Hours) Lithology logs (SP, Caliper, and Gamma); Porosity Logs (Density, neutron and Sonic), Resistivity, Induction logs. Quick look analysis :-Overlay, (Logarathmic movable oil plot, Neutron density, density sonic, dielectric-porosity overlay) Cross Plots (Trend analysis and Grouping, Extrapolation, frequency plots Z Plots Sandy shale interpretation Fracture detection Porosity from Resistivity											
UNIT-III Special log, geo	Logging chemica	Techniqu I log, vert	ie Nuclea ical seisn	ar magneti nic profilin	ic resc g,	onance	e logg	ging, Dip	o meter, ii	(10 Hours) mage logging, gyroscopic	
UNIT-IV Integrat dual mi seismic, pay), R interpre	log, geochemical log, vertical seismic profiling, UNIT-IV (10 Hours) Integrating and Interpreting data, Correlation of wells, Identification of Sequence stratigraphy tracts dual mineral interpretation, multi mineral interpretation, static model interpretation using well log and seismic, reservoir property evaluation for reserve estimation (gross sand, net sand, gross pay and net pay), Rw calculation and use of the same in Sw, Understanding Sw and Swi thin resistive sand interpretation in facies classification and reservoir property evaluation										

REFERENCES

Texts and References: 1. Malcom Rider, Second Edition, 2002: The Geological Interpretation of well logs, Rider-French Consulting limited 2. Oeberto Serra & Lorenzo Serra, 2004 : Well logging - data acquisition and applications, Edition Serralog, France

	19PTE034 Reservoir Engineering and Development Geology											
	Теа	ching Scl	heme					Exam	ination Sc	heme		
L	Т	Р	С	Hr/Wk	Theory		Practical		Total Marks			
3	0	0	3	3	MS	ES	IA	LW	LE/Viva	100		
	1 1 1 1 1 1 1 1 1 1											
Unit - 1 Classifi Reserve underst	Image: Constraint of the server of the ser											
Unit - 2	Unit - 2: Reservoir data for model building and performance analysis Hrs- 10											

Reservoir Data types: geology, seismic, geophysical well log, core and well testing and production data, Integration of all data for static and dynamic Reservoir Model building, Reservoir Performance analysis by various methods: volumetric, decline curve, material balance & simulation.

Unit - 3: Reservoir characterization and management – concept and processes Hrs- 9 Definition, history & fundamentals of reservoir management, synergic team approach; Integration of geosciences and engineering for reservoir characterization – exploratory stage, early and mature stage and for brown field – general workflow and case specific studies.

Unit -4: Preparation of Development plans, technoeconomic evaluation with case studiesHrs 10 Developmental plans for Oil fields-depletion drive, mixed drives and water drive, Development plan for Gas fields. Importance of improved recovery processes in development plans and their screening criteria. Production Economics and Techno economic evaluation. Development plan of reservoir, surveillance & monitoring, revision of plans & strategies.Few case studies for preparing development plans.

REFERENCES

Texts and References:

- 1. Integrated Petroleum Reservoir Management- A team approach: AbdusSatter& Ganesh C. Thakur; Penwell Publishing Company, Tulsa, Oklahoma.
- 2. Development of oil and gas fields: Dr. Sant Kumar; Allied Printers, Dehra Dun, 248001, India.
- **3.** Practical ReservoirEngineering and Characterization : Richard O. Baker, Harvey W. Yarranton, Jerry L. Jensen Gulf Professional Publishing, 2015
- 4. Reservoir Explorationand Appraisal : Luiz Amado Gulf Professional Publishing, 2013

	19PTE035 Well Site Geology and Drilling Technology										
	Теа	ching Sch	neme					Exam	nination So	cheme	
L	Т	Р	С	Hr/Wk	Т	heory	/	Practic	al	Total Marks	
3	0	0	3	3	MS ES IA		LW	LE/Viva	100		
					25	50	25				
UNIT-I										(10 Hrs)	
Type of	well loo	cations, G	Geo Tech	nical Orde	er, We	ell De	sign,	Drill Rig	s, Drill ho	les, Methods of Drilling,	
Drilling	Controls										
UNIT-II										(10 Hrs)	
Drilling Fluids, Offshore Drilling Technology; Geologging: Geological Control, Core logging, Mud Logging,											
Gas log	Gas logging.										
UNIT-III										(9 Hrs)	
Sub-Sur	face Pres	sures & 1	Fempera t	ture, Drilli	ng Con	nplica	tions,	Casing	and Ceme	ntation, Onshore and	
Offshor	e Well Co	ompletion	n, Offsho	re product	ion sy	stem,					
UNIT-IV	,									(10 Hrs)	
Product	ion Loggi	ing, Surfa	ce Contr	ol Equipm	ents, V	Vell P	roble	ms & An	alysis. For	mation Damage, Work	
over Job	os, Well S	timulatio	on, Duties	s of well si	te geo	logists	s and	Docume	entation		
REFEREN	CES										
Gupta, I	Gupta, P. K. and Nandi, P. K. (1995): Wellsite Geological Techniques and Formation Evaluation: A user's										

manual, Vol. Oil and Natural Gas Corporation, Dehradun

	19PTE036E Enhanced Oil Recovery											
	Теа	ching Sch	neme					Exam	nination So	cheme		
L	Т	Р	С	Hr/Wk	٦	Theory	/	Practic	al	Total Marks		
2	0	0	2	2	MS	ES	IA	LW	LE/Viva	100		
					25	50	25					
UNIT-I Unit - 1 Definiti potentia	: Introd on, Diffe 1 of diffe	uction to rence of rent EOR	EOR pro IOR and processe	ocesses EOR, Tar	get oi	l resou	urce fo	or EOR,	General c	Hrs-4 classification, Description a		
UNIT-II Unit - 2 Microso system - for diffe	JNIT-II Unit - 2: Theory of displacement of oil and gas Hrs-4 Microscopic and macroscopic displacement of fluids in a reservoir, Displacement efficiency in different system – linear, areal, volumetric, Definition and discussion of mobility ratio and mobility control processe for different types of fluids UNIT-III											
Unit – 3 Miscible Chemic Therma Microbi Selection analysi econom	: Candi e/Immisc al Floodi l recovery al EOR n criteria s, cased / ic feasibi	dates for ible displ ng - poly y process for EOR open hole lity, Full	EOR pro lacement ymer floo es- in situ : Determ e logs, sir scale imp	cesses and processes ding, Surfa combusti ination of ngle well to plementati	l Selec - wate actant ion, ho residu racer). on, M	ction C er flood ot-wat nal oil , Labo conitor	Criteri oding, ing, N er in (well oratory ing an	a Hrs gas inje ficellar jection, test, reso studies nd review	–12 ection, mic flooding r steam floo ervoir perf , Field pilo	cro-emulsion flooding related methods oding, SAGD formance, core ot test and evaluation, Tech		
UNIT-IV Unit – 4 Field sc	: Global ale imple	Scenario mentatio	of EOR and the	and Some ir perform	Case ance of	Studie of vari	es ous E	OR sche	emes of lo	Hrs - 6 cal and global context		
REFEREN Texts an 1. Enha Yen (Ec 2. Enha Yen (Ec 3.Mode Publishi 4. Enha	CES and Referen nced Oil lited) – E nced Oil lited) – E rn Chemi ang, Elsev nced Oil	nces: Recovery Isevier S Recovery Isevier S cal Enha vier Recovery	7, I –Fund cience Pu 7, II –Prod cience Pu nced Oil 7 – D. W.	lamentals iblishers B cesses and iblishers B Recovery: Green, G.	and	nalyse: - 1985 ations - 1989 ry and ïillhite	s – E. – E. C). I Prac – SP!	C. Donal C. Donal tice-Jam E Textbo	aldson, G. dson, G. les J. Shen pok Series	V. Chilingarian, T. F. V. Chilingarian, T. F. g, Gulf Professional Vol. 6 -1998.		

	19PTE037E Health Safety and Environment in Oil and Gas Sector											
	Теа	ching Sch	neme		Examination Scheme							
L	Т	Р	С	Hr/Wk	Theory			Practical		Total Marks		
2	0	0	2	2	MS	ES	IA	LW	LE/Viva	100		
					25	50	25					
UNIT-I										(4 Hrs)		

UNIT-I

Physical Hazards; Chemical Hazards Biological Hazards, Psychological Hazards, Ergonomic Hazards, Prevention & Remedial controls of Occupational Hazards In Oil & Gas Industry for each type of Hazards Engineering Control, Administrative Control, Medical Control,

Use of Personal Protective Equipment (PPE)

Understanding Fire: Fire triangle/tetrahedron, Stages of development of fire Flammability, Concept of flash / Fire point, volatility, Flammable Limits, Fire Detection; Fire signature, Smoke, Heat, Flame, Combustible Gas Detection Fire Prevention, Fire suppression, Process Safety: Safety Analysis Table, Safety Analysis Checklist & SAFE Chart

UNIT-II

(8 Hrs)

Hazard & Risk Analysis,

Risk Matrix, HAZID, HAZOP, Safe Work Practices; Electrical Safety; Classification of Hazardous locations, use of electricity; Hazardous area Accident Investigations: Study of major accidents. Investigation techniques, Emergency Response planning Audits & Inspection. Audit methodology, protocol, typical check lists for Drilling rigs, Work over activities, logging.

UNIT-III

(6 Hrs)

HSE Management System: Hours: 9 OISD, API RP 75, ISO 14000, ISO 9000, OSHAS 18000 Standards UNIT-IV: (8 Hrs)

Environment Hours: Effect on eco-system; Air, Water, & Soil of HC"s. Impact of Exploration & Exploitation of Hydrocarbon in Offshore, and Onshore, - Environmental Impact Assessment Oil Spills Control and their management.

Government of India Laws and Regulation; international Maritime Environmental Rules & Regulations. Safety in Exploration and Production. Downstream Safety: Implementing Agency PNGRB; Safety **Regulations.**

REFERENCES

NFPA, API 14 G & OISD Standards.

Marchell, V. and Ruchemann, S., Fundamentals of Process Safety, Institution of Chemical Engineers, Warwickshire, UK.

	19PTE038E Application of Modern Instruments in Earth Sciences												
	Теа	ching Sch	neme			Examination Scheme							
L	Т	Р	С	Hr/Wk	Т	heory	/	Practic	al	Total Marks			
2	0	0	2	2	MS	ES	IA	LW	LE/Viva	100			
					25	50	25						

Unit - 1:

(10 Hrs)

X-ray Diffraction Methods : Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Applications

X-ray Spectroscopy for Elemental Analysis:Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Applications

Transmission Electron Microscopy&Scanning Electron Microscopy Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Applications

UNIT-II

Thermal Analysis: Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Applications

Vibrational spectroscopy for molecular analysis: Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Applications

UNIT-III

HPLC and column liquid chromatography: Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Applications

Mass spectroscopy: Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Application

UNIT-IV

Uv-visible spectroscopy: Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Application

Fluorescence spectroscopy: Fundamentals, Instrumentation, Sample preparation, and Data Acquisition, Analysis and Application

REFERENCES

- 1. Materials Characterization: Introduction to Microscopic and spectroscopic methods; yang Leng, John Wiley & Sons (Asia) Pte Ltd.
- 2. Chromatography in the petroleum industry. Edited by E.R.Adlard, Elsevier, Journal of Chromatography, Library volume -56
- 3. Spectroscopic Methods in Mineralogy and Material Sciences. Edited by Grant S. Henderson, Daniel R. Neuville and Robert T. Downs. Mineralogical Society of America, Geochemical Society, Series Editor Jodi J Rosso, 2014.
- 4. Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz, Springer, third edition.
- 5. Spectrometric identification of organic compounds. Edited by Robert M. Silverstein, Francis X. Webster, David J. Kiemle, John Wiley & Sons. Inc.
- 6. Structure Determination of Organic Compounds. Edited by Ern "oPretsch · Philippe B"uhlmann Martin Badertscher , Springer
- 7. Ultraviolet Spectroscopy and UV lasers. edited by PrabhakarMisra, Mark A. Dubinskii Marcel Dekker Inc, New York, Basel

	19PTE039 Numerical Methods and Geostatics												
	Теа	ching Scl	heme					Exam	ination Sc	heme			
L	Т	Р	С	Hr/Wk	Theory			Practic	al	Total Marks			
3	0	0	3	3	MS	MS ES IA			LE/Viva	100			
					25	50	25						

UNIT-I

Interpolation by polynomials, divided differences, error of the interpolating polynomial, piecewise linear and cubic spline interpolation. Numerical integration, composite rules, error formulae. Solution of a system of linear equations, implementation of Gaussian elimination and Gauss-seidel methods, partial pivoting, row echelon form, LU factorization Cholesky's method, ill-conditioning, norms.

UNIT-II

Solution of a nonlinear equation, bisection and secant methods. Newton's method, rate of convergence, solution of a system of nonlinear equations, numerical solution of ordinary differential equations, Euler and Runge-Kutta methods, multi-step methods, predictor-corrector methods, order of convergence, finite difference methods, numerical solutions of elliptic, parabolic, and hyperbolic partial differential equations. Eigenvalue problem, power method, QR method, Gershgorin's theorem. Exposure to software packages like IMSL subroutines, MATLAB.

UNIT-III

Introduction to Geostatics, Probability Theory review, Spatial Analysis, Variogram Modelling, Estimation (Global and Local).

UNIT-IV

Cross validation, Estimators (Simple kriging, Indicator kirging, Block kriging); Geostatistical simulation (Cholesky decomposition, conditional simulation, sequential gaussian simulation-SGS)

REFERENCES

S. D. Conte and Carl de Boor, Elementary Numerical Analysis- An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980

C. E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley, 1981

E. Kreyszig, Advanced engineering mathematics (8th Edition), John Wiley (1999)

	19PTE040P Applied Micropalaeontology Practical												
	Теа	ching Sc	heme					Exam	ination So	cheme			
L	Т	Р	С	Hr/Wk	Theory			Practic	al	Total Marks			
0	0	2	1	-	MS ES IA			LW	LE/Viva	100			
								50	50				
1)) Study of Benthic Foraminifera												
2)) Study of Planktonic Foraminifera												
3)	Study of	of Ostra	ctods										
4)	Study of	of nanop	lankton	5									
5)	Study of	of spores	s and Po	llens									
6)	Recons	structing	Palynot	facies									
7)	Well to Well Correlation based on microfossils												
8)	Interpr	etation c	of paleoe	environme	ent ba	sed of	n Mie	crofossi	ls				

19PTE041P Geoscience and Hydrocarbon Exploration Fieldwork											
	Теа	neme			Examination Scheme						
L	Т	Р	С	Hr/Wk	Theory		Practical		Total Marks		
0	0	10	5	-	MS	ES	IA	LW	LE/Viva	100	
								50	50		
The course is aimed at giving practical exposure to students for understanding concept of Basin,											
Structu	Structural geology, Paleontology, Sequence stratigraphy in the field.										
REFERENCES											
LAHEE, F. H. FIELD GEOLOGY, MC GRAW-HILL, PUBLICATION											